Sítnice je její vnitřní membrána a periferní část celého vizuálního analyzátoru. Sítnice obsahuje fotoreceptory, jejichž funkcí je zajistit vnímání a následnou přeměnu elektromagnetického záření ze světelných vln na nervové impulsy. Retinální fotoreceptory také předběžně zpracovávají tyto nervové impulsy.
Struktura sítnice je reprezentována tenkou membránou, která po celé své délce pevně zapadá do skloviny zevnitř. Z vnějšku sousedí sítnice s cévnatkou. Sítnice je rozdělena na dvě části, které nemají stejnou velikost. Největší část je vizuální, skládá se z 10 vrstev a zasahuje do řasnatého tělesa. Přední strana sítnice má zvláštní název, „slepou část“, protože postrádá fotoreceptory. Slepá část sítnice je rozdělena na duhovku a řasnatku podle částí cévnatky.
Struktura zrakové části sítnice je reprezentována heterogenními vrstvami, které lze studovat pouze na mikroskopické úrovni. Celkem 10 vrstev, které následují do oční bulvy:
Zevnitř přiléhá pigmentová vrstva ke struktuře oka, označované jako Bruchova membrána. Tloušťka této membrány je od 2 do 4 mikronů, díky své plné průhlednosti se také nazývá skleněná deska. Funkce Bruchovy membrány mají za následek antagonismus ciliárního svalu v době ubytování. Také Bruchova membrána dodává živiny a tekutiny do pigmentové vrstvy sítnice a do cévnatky.
Jak tělo stárne, membrána zhušťuje a mění své proteinové složení. Tyto změny vedou ke zpomalení výměnných reakcí a pigmentový epitel ve formě vrstvy se také vyvíjí na hraniční membráně. Probíhající změny hovoří o nemocech sítnice souvisejících s věkem.
Velikost sítnice dospělé osoby dosahuje 22 mm a pokrývá přibližně 72% celkové plochy vnitřních povrchů oční bulvy. Retinální pigmentový epitel, tj. Jeho vnější vrstva, je těsněji spojen s cévnatkou lidského oka než s jinými strukturami sítnice.
Ve středu sítnice, v části, která je blíže k nosu, na zadní straně povrchu je disk optického nervu. V disku nejsou žádné fotoreceptory, a proto je v očním lékařství označován jako „slepý úhel“. Na snímku pořízeném při mikroskopickém vyšetření oka vypadá „slepá skvrna“ jako oválný bledý odstín, mírně stoupající nad povrch a mající průměr asi 3 mm. V tomto bodě začíná primární struktura optického nervu z axonů gangliových neurocytů. Centrální část lidského sítnicového disku má depresi a cévy procházejí touto depresí. Jejich funkcí je dodávat krev sítnici.
Na straně hlavy optického nervu ve vzdálenosti asi 3 mm je místo. V centrální části tohoto místa je centrální fossa - deprese, která je nejcitlivější na světelnou část lidské sítnice.
Centrální fossa sítnice je tzv. "Žlutá skvrna", která je zodpovědná za jasné a zřetelné centrální vidění. V "žluté skvrně" lidské sítnice jsou pouze kužely.
Člověk (stejně jako ostatní primáti) má vlastní vlastnosti struktury sítnice. Osoba má centrální fossa, zatímco některé druhy ptáků, stejně jako kočky a psi, mají místo tohoto fossa „vizuální proužek“.
Sítnice oka v její centrální části je reprezentována pouze fossa a okolní oblastí, která se nachází v okruhu 6 mm. Pak přichází obvodová část, kde se postupně snižuje počet kuželů a tyčí na hrany. Všechny vnitřní vrstvy sítnice jsou zakončeny rýhovanou hranou, jejíž struktura neznamená přítomnost fotoreceptorů.
Tloušťka sítnice po celé její délce se mění. V nejhustší části v blízkosti okraje hlavy optického nervu dosahuje tloušťka tloušťky 0,5 mm. Nejmenší tloušťka se nachází v oblasti žlutého těla, nebo spíše v jeho fosse.
Anatomie sítnice na mikroskopické úrovni je reprezentována několika vrstvami neuronů. Radikálně se nacházejí dvě vrstvy synapsí a tři vrstvy nervových buněk.
V nejhlubší části lidské sítnice jsou umístěny gangliové neurony, tyčky a kužely jsou zároveň odstraněny z centra do největší vzdálenosti. Jinými slovy, taková struktura činí sítnici obráceným orgánem. Proto musí světlo před dosažením fotoreceptorů proniknout všemi vnitřními vrstvami sítnice. Tok světla však neproniká pigmentovým epitelem a cévnatkou, protože jsou neprůhledné.
Před fotoreceptory jsou kapiláry, protože při pohledu na zdroj modrého světla jsou leukocyty často vnímány jako nejmenší pohyblivé body, které mají světlou barvu. Takové rysy vidění v oftalmologii jsou odkazoval se na jako Shearer jev nebo entopic modrý jev jev.
Kromě ganglionických neuronů a fotoreceptorů jsou v sítnici také bipolární nervové buňky, jejichž funkce je přenášet kontakty mezi prvními dvěma vrstvami. Horizontální spojení v sítnici je tvořeno amakrinními a horizontálními buňkami.
Na velmi zvětšené fotografii sítnice mezi vrstvou fotoreceptoru a vrstvou gangliových buněk je možno vidět dvě vrstvy tvořené plexusy nervových vláken, které mají mnoho synaptických kontaktů. Tyto dvě vrstvy mají svá vlastní jména - vnější plexiformní vrstvu a vnitřní plexiformní vrstvu. Prvními funkcemi jsou kontinuální kontakt mezi kužely a tyčemi a také mezi vertikálními bipolárními buňkami. Vnitřní plexiformní vrstva přepíná signál z bipolárních buněk na ganglionické neurony a amakrinní buňky umístěné v horizontálním a vertikálním směru.
Z toho můžeme vyvodit, že jaderná vrstva, umístěná vně, obsahuje fotosenzorové buňky. Těla bipolární amakrinní a horizontální buňky vstupují do vnitřní jaderné vrstvy. Ganglionické buňky samotné a nevýznamný počet amakrinních buněk přímo vstupují do gangilionické vrstvy. Všechny vrstvy sítnice jsou permeovány Müllerovými buňkami.
Struktura vnější hraniční membrány je reprezentována synaptickými komplexy, které jsou umístěny mezi vnější vrstvou gangliových buněk a mezi fotoreceptory. Vrstva nervových vláken je tvořena axony gangliových buněk. Při tvorbě vnitřní hraniční membrány se účastní bazální membrány Müllerových buněk a konec jejich procesů. Axony gangliových buněk, které nemají Schwannovy skořápky, které dosáhly vnitřního okraje sítnice, se otočí v pravém úhlu a jdou na místo, kde se tvoří optický nerv.
Sítnice oka každého člověka obsahuje od 110 do 125 milionů prutů a od 6 do 7 milionů kuželů. Tyto prvky citlivé na světlo jsou nerovnoměrné. V centrální části je maximální počet kuželů, v periferii je více tyčí.
Byla identifikována řada získaných a dědičných očních onemocnění, v nichž může být sítnice zapojena do patologického procesu. K tomuto seznamu patří:
Sítnice je vnitřní obal oka, který se skládá ze 3 vrstev. To je přilehlý k choroid, jde o celé pokračování až k žákovi. Struktura sítnice zahrnuje vnější část s pigmentem a vnitřní část s prvky citlivými na světlo. Když se vidění zhorší nebo zmizí, barvy se již neliší normálně, je vyžadován oční test, protože tyto problémy jsou obvykle spojeny s patologií sítnice.
Sítnice je pouze jednou z vrstev oka. Několik vrstev:
Před zvážením sítnice je nutné přesně pochopit, co tato část oka je a jaké funkce provádí. Sítnice je citlivá vnitřní část, je zodpovědná za zrak, vnímání barev, vidění za soumraku, to znamená schopnost vidět v noci. Provádí další funkce. Kromě nervových buněk zahrnuje složení membrán krevní cévy, normální buňky, které zajišťují metabolické procesy, výživu.
Zde jsou tyčky a kužely, které poskytují periferní a centrální vidění. Přeměňují světlo, které vstupuje do oka, do nějakého druhu elektrických impulsů. Centrální vidění poskytuje jasnost objektů, které jsou umístěny ve vzdálenosti od osoby. Aby bylo možné navigovat ve vesmíru, je zapotřebí periferní zařízení. Struktura sítnice zahrnuje buňky, které vnímají světelné vlny různých délek. Rozlišují barvy, jejich četné odstíny. Oční test je vyžadován v případech, kdy nejsou prováděny základní funkce. Například, vidění se začne prudce zhoršovat, schopnost rozlišovat barvy zmizí. Vize může být obnovena, pokud byla nemoc včas detekována.
Anatomie sítnice je specifická, sestává z několika vrstev:
Při pozorování retinální léze závisí léčba do značné míry na vlastnostech patologie. K tomu musíte projít diagnózou, zjistit, jaký druh onemocnění je pozorován.
Mezi diagnostickými metodami, které se dnes konají, je nutné zdůraznit:
Aby bylo možné včas určit poškození sítnice, je nutné podrobit se pravidelným zkouškám, nikoli odložit. Doporučuje se poradit se s lékařem, pokud se vidění začne náhle zhoršovat, a není důvod k tomu. Poškození může nastat v důsledku zranění, proto se v takových situacích doporučuje okamžitě diagnostikovat.
Retikulární membrána oka, stejně jako jiné části oka, je náchylná k onemocněním, jejichž příčiny jsou odlišné. Když jsou identifikováni, měli byste se včas poradit se specialistou, aby byla přijata odpovídající léčebná opatření.
Vrozené nemoci zahrnují takové změny sítnice:
Když je poškozeno oko, hlavním příznakem je prudké zhoršení vidění.
Často se jedná o situaci, kdy vize zmizí. Současně může přetrvávat periferní vidění. U zranění je také situace, kdy je centrální část zachována, v tomto případě nemoc pokračuje bez viditelného zhoršení zraku. Problém je zjištěn, když je pacient testován odborníkem. Příznaky mohou být porušení vnímání barev, jiné problémy. Proto je důležité neprodleně konzultovat lékaře, jakmile je pozorováno zhoršení zraku.
Sítnice je obálka, na které závisí vidění barev. Shell se skládá z několika vrstev, z nichž každá plní svou funkci. Při onemocněních sítnice je hlavním příznakem rozmazané vidění, pouze lékař může během rutinního vyšetření odhalit nemoc, když se pacient obrátí na jakékoli problémy.
http://zdorovyeglaza.ru/lechenie/setchatka-glaza.htmlSítnice je vnitřní výstelka oka, která má citlivé fotoreceptory. Jinými slovy, sítnice je shluk nervových buněk, které jsou zodpovědné za vnímání a držení vizuálního obrazu. Sítnice se skládá z deseti vrstev, které zahrnují nervovou tkáň, krevní cévy a další buněčné elementy. Kvůli cévní síti se metabolické procesy vyskytují ve všech vrstvách sítnice.
Ve struktuře sítnice jsou izolovány speciální receptory (kužely a tyče), které přeměňují světelné fotony na elektrické impulsy. Dále jsou nervové buňky vizuální dráhy, které jsou zodpovědné za periferní a centrální vidění. Centrální vidění je zaměřeno na pozorování objektů, které jsou umístěny na různých úrovních, navíc pomocí centrálního vidění člověk čte text. Periferní vidění je nezbytné především pro navigaci ve vesmíru. Jehličnaté receptory mohou být tří typů, což nám umožňuje vnímat světelné vlny různých délek, to znamená, že tento systém je zodpovědný za vnímání barev.
V sítnici emitují optickou část, reprezentovanou fotosenzitivními prvky. Tato zóna je umístěna na ozubeném závitu. V sítnici je také dostupná nefunkční tkáň (ciliární a duhovka), která se skládá ze dvou buněčných vrstev.
Po zkoumání embryonálního vývoje sítnice jej vědci přisuzovali oblasti mozku, která se posunula na okraj. Sítnice se skládá z 10 vrstev, které zahrnují: vnitřní okrajovou membránu, vnější okrajovou membránu, vlákna optického nervu, gangliové buňky, vnitřní vrstvu plexiformu (plexus), vnější plexiformní vrstvu, vnitřní jadernou (jadernou) vrstvu, vnější jadernou vrstvu, pigmentový epitel, fotoreceptorová vrstva tyčí a kuželů.
Hlavní funkcí sítnice je vnímání a vedení světelných paprsků. K tomu, struktura sítnice má 100-120 milionů tyčí a asi 7 milionů kuželů. Receptory jsou tři typy, z nichž každá obsahuje určitý pigment (červená, modrá, zelená). Díky tomu se v oku objevuje vlastnost, která je velmi důležitá pro plné vidění - vnímání světla. V tyčinkových receptorech je rhodopsin, což je pigment, který absorbuje paprsky červeného spektra. V tomto ohledu, v noci, obraz je tvořen hlavně kvůli práci prutů, a ve dne - kužely. V období soumraku by celé receptorové zařízení mělo pracovat do určité míry nebo jinak.
Na sítnici nejsou fotoreceptory rovnoměrně rozloženy. Nejvyšší koncentrace kuželů se dosahuje v centrální fovální zóně. Do okrajových oblastí se postupně snižuje hustota této vrstvy fotoreceptoru. Tyčinky jsou naopak v centrální zóně prakticky nepřítomné a jejich maximální koncentrace je pozorována v kruhu umístěném kolem fovální oblasti. Na periferii se také snižuje počet fotoreceptorů tyčinek.
Vize je velmi složitý proces, protože v reakci na foton světla, který dopadá na fotoreceptor, vzniká elektrický impuls. Tento impuls důsledně vstupuje do bipolárních a gangliových neuronů, které mají velmi dlouhé procesy, nazývané axony. Právě tyto axony se podílejí na tvorbě zrakového nervu, který je vodičem impulsu z sítnice do centrálních struktur mozku.
Rozlišení vidění závisí na tom, kolik fotoreceptorů se připojí k bipolární buňce. Například ve fovální oblasti se pouze jeden kužel připojuje ke dvěma gangliovým buňkám. V periferní oblasti je pro každou buňku ganglionu větší počet kuželů a tyčí. V důsledku takového nerovnoměrného spojení fotoreceptorů s centrálními strukturami mozku je v makule zajištěno velmi vysoké rozlišení zraku. Současně tyčinky v periferní zóně sítnice pomáhají vytvářet normální periferní vidění.
V samotné sítnici jsou dva typy nervových buněk. Horizontální nervové buňky jsou umístěny ve vnější vrstvě ve tvaru plexu (plexiform) a amakrinních buňkách ve vnitřní. Zajišťují vzájemné propojení neuronů umístěných v sítnici. Hlava optického nervu je umístěna 4 mm od centrální fovální oblasti v nosní polovině. V této zóně nejsou žádné fotoreceptory, proto fotony uvězněné na disku nejsou přenášeny do mozku. V zorném poli je vytvořeno tzv. Fyziologické místo, které odpovídá disku.
Tloušťka sítnice se liší v různých oblastech. Nejmenší tloušťka je pozorována v centrální zóně (foveal region), která je zodpovědná za vidění s vysokým rozlišením. Nejsilnější sítnice je v oblasti tvorby hlavy optického nervu.
Zezdola se na sítnici připevňuje cévnatka, která je s ní pevně spojena pouze na některých místech: kolem zrakového nervu, podél dráhy zubaté linie, podél okraje makuly. Ve zbývajících oblastech sítnice je choroid připojena volně, a proto v těchto oblastech je zvýšené riziko odchlípení sítnice.
Existují dva zdroje výživy pro sítnicové buňky. Šest vrstev sítnice, umístěných uvnitř, je zásobováno centrální tepnou sítnice, vnější čtyři vrstvy jsou samotná choroidální membrána (choriokapilární vrstva).
Pokud máte podezření, že patologie sítnice by měla být následující:
Při vrozené patologii sítnice mohou být přítomny následující příznaky onemocnění:
Mezi získané změny v sítnici vyzařují:
Když je sítnice poškozena, často dochází ke snížení vizuální funkce. Pokud je postižena centrální zóna, pak je vidění obzvláště postiženo a její porušení může vést k úplné centrální slepotě. V tomto případě je zachováno periferní vidění, takže člověk může navigovat ve vesmíru. Pokud je v případě onemocnění sítnice postižena pouze periferní oblast, může být patologie dlouhodobě asymptomatická. Takové onemocnění je určováno častěji při oftalmologickém vyšetření (test periferního vidění). Pokud je oblast poškození periferního vidění rozsáhlá, pak je v zorném poli závada, to znamená, že některé oblasti jsou slepé. Kromě toho se snižuje schopnost navigace v prostoru za zhoršených světelných podmínek a v některých případech se mění vnímání barev.
Kužely a tyče jsou citlivé fotoreceptory umístěné v sítnici. Přeměňují světelnou stimulaci na nervovou, tj. Tyto receptory transformují foton světla na elektrický impuls. Dále tyto impulsy vstupují do centrálních struktur mozku vlákny optického nervu. Tyče vnímají hlavně světlo za podmínek nízké viditelnosti, lze říci, že jsou zodpovědné za noční vnímání. Kvůli práci kuželů, osoba má vnímání barev a zrakovou ostrost. Podívejme se nyní blíže na každou skupinu fotoreceptorů.
Sítnice je spíše tenká skořápka oční bulvy, jejíž tloušťka je 0,4 mm. Řadí oko zevnitř a nachází se mezi cévnatkou a látkou sklivce. Existují pouze dvě oblasti uchycení sítnice k oku: podél jeho zubaté hrany v zóně začátku řasnatého tělesa a kolem okraje optického nervu. V důsledku toho se projeví mechanismy odchlípení sítnice a prasknutí, stejně jako tvorba subretinálních krvácení.
Během období embryonálního vývoje se sítnice tvoří z neuroektodermu. Jeho pigmentový epitel je odvozen z vnějšího letáku primárního optického poháru a neurosenzorická část sítnice je odvozena z vnitřní příbalové informace. Ve fázi invaze optického vezikulu jsou buňky vnitřního (nepigmentovaného) letáku směrovány směrem ven k vrcholům a přicházejí do styku s buňkami pigmentového epitelu, které jsou zpočátku válcového tvaru. Později (do pátého týdne) buňky získají krychlový tvar a jsou uspořádány v jedné vrstvě. V těchto buňkách je pigment nejprve syntetizován. Také ve stadiu očního kelímku se vytvoří bazální deska a další prvky Bruchovy membrány. Již v šestém týdnu vývoje embrya se tato membrána velmi vyvíjí a objevují se choriokapiláry, kolem kterých je bazální membrána.
Makula je centrální zóna sítnice, ve které je vytvořen jasný obraz. To je možné díky vysoké koncentraci fotoreceptorů v makule. Výsledkem je, že obraz je nejen ostrý a jasný, ale také barevný. Právě tato centrální zóna sítnice umožňuje rozlišit tváře lidí, číst, vidět barvy.
Přívod krve do sítnice nastává ze dvou systémů cév.
První systém zahrnuje větve centrální tepny sítnice. Je to z toho, že vnitřní vrstvy této skořápky oční bulvy jsou vyživovány. Druhá síť cév se týká cévnatky a poskytuje krev vnějším vrstvám sítnice, včetně fotoreceptorové vrstvy tyčí a kuželů.
Struktura oka je velmi obtížná. Patří ke smyslům a je zodpovědný za vnímání světla. Fotoreceptory mohou vnímat paprsky světla pouze v určitém rozsahu vlnových délek. Většinou dráždivý účinek na oko má světlo s vlnovou délkou 400-800 nm. Po tomto, vznik aferentních impulzů, které jdou dále do centra mozku. Tak vznikají vizuální obrazy. Oko plní různé funkce, například může určit tvar, velikost objektů, vzdálenost od oka k objektu, směr pohybu, světlost, barvu a řadu dalších parametrů.
http://setchatkaglaza.ru/stroenieSítnice je tenká vrstva nervové tkáně umístěná na vnitřní straně zadní strany oční bulvy. Sítnice je zodpovědná za vnímání obrazu, který je na něj promítán pomocí rohovky a čočky, a transformuje je na nervové impulsy, které jsou pak přenášeny do mozku.
Nejvíce pevně je sítnice spojena s podkladovými membránami oční bulvy podél okraje hlavy optického nervu. Tloušťka sítnice v různých oblastech se liší: na okraji hlavy optického nervu je to 0,4–0,5 mm, v centrální fosse 0,2–0,25 mm, v jamce pouze 0,07–0,08 mm, v oblasti zubů řádky asi 0,1 mm.
Nejsložitější struktura umožňuje sítnici nejprve vnímat světlo, zpracovávat a transformovat světelnou energii na stimulaci - signál, který kóduje všechny informace, které oko vidí.
Nejdůležitější částí sítnice je makula (makulární oblast, žlutá skvrna). Makula je zodpovědná za centrální vidění, protože obsahuje velké množství fotoreceptorů - kuželů. Dávají nám příležitost vidět dobře za denního světla. Nemoci makuly mohou výrazně snížit vidění.
Sítnice je poměrně složitá struktura. Mikroskopicky je v sítnici 10 vrstev, které se počítají z vnějšku dovnitř. Hlavní vrstvy jsou pigmentový epitel a fotosenzitivní buňky (fotoreceptory). Pak přichází vnější okrajová membrána, vnější jaderná vrstva, vnější síťová (synaptická) vrstva, vnitřní jaderná vrstva, vnitřní síťová vrstva, vrstva ganglionu, vrstva nervových vláken, vnitřní okrajová membrána.
Pigmentový epitel se rozprostírá přes optickou část sítnice a přímo ohraničuje podkladovou cévní membránu, která má spojení se sklovitou deskou.
Pigmentový epitel je jedinou vrstvou hustě umístěných buněk obsahujících velké množství pigmentu. Buňky pigmentového epitelu mají tvar hexagonálního hranolu a jsou uspořádány v jedné řadě. Takové buňky jsou součástí tzv. Hemoretinální bariéry, která zajišťuje selektivní tok určitých látek z krevních kapilár cévnatky do sítnice.
Kolby-jako a tyč-jako buňky, nebo více jednoduše, tyčinky a kužely, dostal toto jméno protože tvaru vnějšího segmentu. Tento typ buňky je považován za první neuron sítnice.
Tyče jsou pravidelné válcové útvary o délce 40 až 50 mikronů. Celkový počet prutů v celé sítnici je asi 130 milionů, poskytují vidění při slabém osvětlení, například v noci, a mají velmi vysokou světelnou citlivost.
V sítnici lidského oka je 7 milionů kuželů a fungují pouze za jasných podmínek. Jsou odpovědné za centrální tvarované vidění a vnímání barev.
http://excimerclinic.ru/retina/structure/Jeden z nejcitlivějších a klíčových (z hlediska vnímání vizuálních obrazů) očních membrán je považován za sítnici. Jaká je jeho exkluzivita a význam pro lidský vizuální systém, zkuste se podrobněji zabývat.
S retikulární strukturou - tedy specifičností jejího názvu - je sítnice periferní část orgánu zraku (přesněji vizuální analyzátor), která je specifickým (biologickým) „oknem do mozku“.
Mezi jeho vlastnosti patří:
Anatomicky tvoří sítnice vnitřní membránu oční bulvy (linie očního oka): mimo ni je obklopena cévnatou membránou vizuálního analyzátoru a zevnitř ohraničuje sklovité tělo (jeho membránu).
Úlohou sítnice je transformovat světelnou stimulaci z prostředí, proměnit ji v nervový impuls, aktivovat nervová zakončení a provést primární zpracování signálu.
Ve struktuře zrakového systému je sítnici přiřazena úloha smyslové složky:
Z funkčního i strukturálního hlediska je sítnice obvykle rozdělena na 2 složky:
Optická část sítnice je v celém svém rozsahu nerovnoměrná:
V sekci sítnice můžete sledovat 3 neurony, které jsou umístěny radiálně:
První dva neurony jsou poměrně krátké, gangliový neuron má délku až do struktury mozku.
Strukturální jednotky sítnice jsou její vrstvy, jejich celkový počet je 10,
4 z nich představují fotosenzitivní aparát sítnice a zbývajících 6 je mozková tkáň.
Stručně o každé z vrstev:
Zóna, kde hlavní nerv optického orgánu vyzařuje do mozkových struktur, se nazývá disk optického nervu.
Jeho celková plocha je asi 3 mm 2, hodnota průměru je 2 mm.
Akumulace cév se nachází v zóně podél středu disku, jsou strukturně reprezentovány žílou sítnice a centrální tepnou, které mají zajišťovat zásobování sítnice krví.
Oko v jeho centrální části má specifickou formaci - retinální náplast (makula).
To také má centrální fossa (umístil v samém středu místa) - nálevka vnitřního povrchu sítnice. Ve velikosti odpovídá velikosti hlavy optického nervu, nachází se naproti zornici.
Toto je místo vizuálního analyzátoru, kde je zraková ostrost nejvýraznější (místo je zodpovědné za její jasnost a jasnost).
Biofyzikální princip fungování sítnice může být reprezentován následujícím způsobem:
Ve struktuře oftalmologických onemocnění a patologií není výskyt sítnice podle hrubých odhadů 1%. Nejběžnější porušení lze rozdělit do několika skupin:
Při anomální funkci sítnice pacienti zaznamenávají podobné příznaky:
Zvažte například nejběžnější patologie sítnice:
Sítnice je nejvnitřnější výstelkou oka, což je vysoce diferencovaná nervová tkáň, která hraje klíčovou roli při poskytování vidění.
Sítnice se skládá z deseti vrstev obsahujících neurony, krevní cévy a další struktury. Jedinečnost struktury sítnice zajišťuje fungování vizuálního analyzátoru.
Sítnice má dvě hlavní funkce: centrální a periferní vidění. Jejich implementaci zajišťují speciální receptory - hůlky a kužely. Tyto receptory transformují světelné paprsky na nervové impulsy, které jsou pak přenášeny podél optického traktu do centrálního nervového systému. Díky centrálnímu vidění může člověk jasně vidět objekty umístěné před ním v různých vzdálenostech, číst a provádět práce v těsných vzdálenostech. Díky perifernímu vidění je člověk orientován do prostoru. Přítomnost kuželů tří druhů, které vnímají světelné vlny různých délek, zajišťuje vnímání barev, odstínů.
Sítnice má optickou oblast, která je fotosenzitivní. Tato oblast se rozprostírá až k zubaté linii. Existují také nefunkční oblasti: ciliární a duhovky, které obsahují pouze dvě vrstvy buněk. Během embryonálního vývoje je sítnice tvořena ze stejné části nervové trubice, která vyvolává centrální nervový systém. To je důvod, proč je charakterizován jako část mozku, která je přenášena na periferii.
Hlavní funkcí sítnice je vnímání světla. To je zajištěno přítomností dvou typů receptorů:
Název přijatých receptorů vzhledem k formě.
Existují tři typy kuželů, které obsahují jeden pigment - červený, zelený, modrý. Díky těmto receptorům člověk rozlišuje barvu.
Tyčinky jsou složeny z rhodopsinového pigmentu, který absorbuje červené paprsky spektra. V noci fungují tyčinky hlavně v denních kuželech, za soumraku jsou všechny fotoreceptory aktivní na určité úrovni.
Fotoreceptory v různých oblastech sítnice jsou nerovnoměrně rozloženy. Centrální zóna sítnice (fovea) je oblast s největší hustotou kužele. Hustota umístění kuželů na okrajových úsecích se snižuje. Centrální oblast zároveň neobsahuje tyče, jejich největší hustota je kolem centrální zóny a na okraji se hustota poněkud snižuje.
Vize je velmi složitý proces vyplývající z kombinace reakcí vyskytujících se ve fotoreceptorech pod vlivem světelných paprsků, přenosu nervových impulsů na bipolární, ganglionické nervové buňky, podél vláken optického nervu a zpracování informací získaných v mozkové kůře.
Čím menší jsou fotoreceptory připojeny k bipolární buňce, která je následuje, a pak k buňce ganglionu, tím vyšší je vizuální rozlišení. V centrální zóně sítnice (fovea) se jeden kužel připojuje ke dvěma gangliovým buňkám, na rozdíl od toho jsou v periferních zónách mnohé receptorové buňky připojeny k malému počtu bipolárních buněk, což je malý počet gangliových buněk přenášejících impulsy podél axonů do mozku. V důsledku toho je oblast makuly, kde je vysoká koncentrace kuželů, charakterizována vysoce kvalitním viděním, zatímco pruty periferních divizí poskytují periferní vidění, méně jasné.
Sítnice obsahuje dva typy nervových buněk:
Tyto dva typy neuronů poskytují propojení mezi všemi nervovými buňkami sítnice.
Hlava optického nervu je umístěna ve střední polovině sítnice (blíže k nosu) přibližně 4 milimetry od centrální zóny. Tato oblast je zcela prostá fotosenzitivních receptorů, proto je v místě jejího zobrazení v zorném poli určeno slepou zónou.
Sítnice má na různých místech jinou tloušťku. Nejtenčí část sítnice se nachází v centrální zóně - fovea, která poskytuje nejjasnější vidění, nejhlubší část - v oblasti hlavy optického nervu.
Sítnice sousedí s cévnatkou a je k ní pevně připojena pouze podél zubaté linie, podél obvodu makulární oblasti a kolem optického nervu. Všechny ostatní oblasti jsou charakterizovány volným spojením sítnice a cévnatky a v těchto oblastech je nejpravděpodobnější odchlípení sítnice.
Retinální trofej je poskytována dvěma zdroji: vnitřní šest vrstev je napájeno z centrálního systému sítnice, vnější čtyři - přímo z cévnatky (její choriokapilární vrstva). Sítnice nemá žádné zakončení senzorických nervů, takže patologické procesy sítnice nejsou doprovázeny bolestí.
Pro studium funkčního stavu sítnice a její struktury se používají následující metody:
Pokud je sítnice poškozena, hlavním příznakem je snížení zrakové ostrosti. Lokalizace léze v centrální zóně sítnice je charakterizována výrazným snížením vidění, její úplná ztráta je možná. Porážka periferních dělení může nastat bez zhoršení vidění, což komplikuje včasnou diagnózu. Dlouhou dobu mohou být tato onemocnění asymptomatická, často zjištěná pouze v diagnóze periferního vidění. Rozsáhlé poškození periferní části sítnice je doprovázeno ztrátou části zorného pole, snížením orientace ve špatném světle (hemelopia) a změnou vnímání barev. Separace sítnice se vyznačuje výskytem záblesků a blesku v oku, zkreslení zraku. Častou stížností je také výskyt černých teček, závoj před očima.
Nemoci sítnice mohou být vrozené nebo získané.
Získaná onemocnění sítnice:
Sítnice, sítnice, sítnice - nejvnitřnější ze tří membrán oční bulvy, přiléhající k cévce v celé její délce až k zornici - periferní část vizuálního analyzátoru, její tloušťka je 0,4 mm.
Retinální neurony jsou smyslovou částí vizuálního systému, který vnímá světelné a barevné signály vnějšího světa.
U novorozenců je horizontální osa sítnice o třetinu delší než svislá osa a během postnatálního vývoje, v dospělosti, má sítnice téměř symetrický tvar. V době narození je v podstatě vytvořena struktura sítnice, s výjimkou fovální části. Jeho konečná podoba je dokončena o 5 let života dítěte.
Také sítnice je rozdělena na vnější pigmentovou část (pars pigmentosa, stratum pigmentosum) a vnitřní fotosenzitivní nervovou část (pars nervosa).
V sítnici emitují
Distální a proximální dělení váží interplexiformní buňky, ale na rozdíl od spojení bipolárních buněk se toto spojení provádí v opačném směru (podle typu zpětné vazby). Tyto buňky přijímají signály z prvků proximální sítnice, zejména z amakrinních buněk, a přenášejí je do horizontálních buněk chemickými synapsy.
Retinální neurony jsou rozděleny do mnoha podtypů, a to v důsledku rozdílu tvaru, synaptických spojení, určovaných povahou dendritických větví v různých zónách vnitřní synaptické vrstvy, kde jsou lokalizovány komplexní systémy synapsí.
Synaptické invaginující terminály (komplexní synapsy), ve kterých tři neurony interagují: fotoreceptor, horizontální buňka a bipolární buňka, jsou výstupní částí fotoreceptorů.
Synapse sestává z komplexu postsynaptických procesů, které napadnou uvnitř terminálu. Ze strany fotoreceptoru ve středu tohoto komplexu je umístěna synaptická páska ohraničená synaptickými vezikuly obsahujícími glutamát.
Postsynaptický komplex je reprezentován dvěma velkými postranními procesy, vždy patřícími k horizontálním buňkám a jedním nebo několika centrálním procesům, které patří k bipolárním nebo horizontálním buňkám. Stejný presynaptický aparát tedy provádí synaptický přenos na neurony 2. a 3. řádu (pokud předpokládáme, že fotoreceptor je prvním neuronem). Ve stejné synapse se provádí zpětná vazba z horizontálních buněk, která hraje důležitou roli v prostorovém a barevném zpracování signálů fotoreceptorů.
Existuje mnoho takových komplexů v synaptických svorkách kuželů a jeden nebo několik z nich je v prutech. Neurofyziologické znaky presynaptického zařízení spočívá v tom, že uvolňování neurotransmiterů z presynaptických zakončení se děje po celou dobu, zatímco fotoreceptor depolarized ve tmě (tonikum), a vztahují se na postupné změně potenciálu na presynaptické membráně.
Mechanismus neurotransmiterů uvolňováním v synaptické přístroje fotoreceptor je podobný jako v jiných synapsích: depolarizace aktivuje vápníkové kanály zahrnuty Vápenaté ionty interagují s presynaptického zařízení (bubliny), což vede k uvolnění mediátoru v synaptické štěrbině. Uvolnění mediátoru z fotoreceptoru (synaptický přenos) je potlačeno blokátory vápníkových kanálů, ionty kobaltu a hořčíku.
Každý z hlavních typů neuronů má mnoho podtypů, tvořících dráhu tyče a kužele.
Povrch sítnice je heterogenní ve struktuře a funkci. V klinické praxi, zejména při dokumentování patologie fundusu, vezměte v úvahu čtyři její oblasti:
Místo začátku optického nervu sítnice je disk optického nervu, který je umístěn 3-4 mm mediálně (směrem k nosu) od zadního pólu oka a má průměr asi 1,6 mm. V oblasti hlavy optického nervu nejsou žádné fotosenzitivní prvky, takže toto místo nedává vizuální vjem a nazývá se slepým bodem.
Laterální (na temporální straně) od zadního pólu oka je bod (makula) - žlutý segment sítnice, který má oválný tvar (průměr 2-4 mm). Ve středu makuly je centrální fossa, která vzniká v důsledku ztenčení sítnice (průměr 1-2 mm). Uprostřed centrální fossy leží jamka - jamka o průměru 0,2-0,4 mm, je to místo největší zrakové ostrosti, obsahuje pouze kužely (asi 2500 buněk).
Na rozdíl od jiných skořápek pochází z ektodermu (ze stěn očního šálku) a podle svého původu se skládá ze dvou částí: vnější (fotosenzitivní) a vnitřní (nevnímající světlo). V sítnici je zubatá čára, která ji dělí na dvě části: světlo-citlivé a nevnímavé světlo. Fotosenzitivní sekce je umístěna na zadní straně zubní linie a nese fotosenzitivní prvky (vizuální část sítnice). Oddělení, které nevnímá světlo, je umístěno dopředu od linie dentate (slepá část).
Struktura slepé části:
Nervová část (samotná sítnice) má tři jaderné vrstvy:
Sítnice je fotosenzitivní část oka, sestávající z fotoreceptorů, která obsahuje:
Vnější kuželový segment je tvarován jako kužel. V periferních částech sítnice tedy mají pruty průměr 2–5 μm a kužely 5–8 μm; v centrální fosse jsou kužely tenčí a mají průměr pouze 1,5 mikronu.
Ve vnějším segmentu tyčinek obsahuje vizuální pigment - rodopsin, v šiškách - jodopsinu. Vnější segment tyčí je tenký tyč-jako válec, zatímco kužely mají zúžený konec, který je kratší a tlustší než tyčinky.
Vnější segment hůlky je svazek disků obklopený vnější membránou, superponovaný na sobě, připomínající hromadu balených mincí. Ve vnějším segmentu hůlky není žádný kontakt mezi okrajem disku a buněčnou membránou.
V kuželu, vnější membrána tvoří četné obláčky a záhyby. Fotoreceptorový disk ve vnějším segmentu tyče je tedy zcela oddělen od plazmatické membrány a ve vnějším segmentu kužele nejsou disky uzavřeny a intradiskový prostor je ve spojení s extracelulárním médiem. Kužely mají zaoblené větší a lehčí barevné jádro než jádro. Centrální procesy, axony, které tvoří synaptické spojení s dendrity bipolární tyče tyče, horizontální buňky, se pohybují pryč od části tyčinek obsahující jádro. Axonové kužely mají také synapsy s horizontálními buňkami as trpaslíkem a plochou bipolární. Vnější segment je spojen s vnitřním segmentem spojovací nohy - cilium.
Ve vnitřním segmentu je mnoho radiálně orientovaných a těsně zabalených mitochondrií (elipsoid), které jsou dodavateli energie pro fotochemické vizuální procesy, množství polyribosomů, Golgiho aparát a malé množství elementů granulovaného a hladkého endoplazmatického retikula.
Oblast vnitřního segmentu mezi elipsoidem a jádrem se nazývá myoid. Jaderné cytoplazmatické tělo buňky, umístěné v blízkosti vnitřního segmentu, přechází do synaptického procesu, do kterého rostou konce bipolárních a horizontálních neurocytů.
Ve vnějším segmentu fotoreceptoru dochází k primárním fotofyzikálním a enzymatickým procesům přeměny energie světla na fyziologickou excitaci.
Sítnice obsahuje tři typy kuželů. Liší se ve vizuálním pigmentu, vnímají paprsky s různými vlnovými délkami. Různá spektrální citlivost kuželů může být vysvětlena mechanismem vnímání barev. V těchto buňkách, které produkují enzym rhodopsinu, se světelná energie (fotony) přemění na elektrickou energii nervové tkáně, tj. fotochemická reakce. Když jsou tyčinky a kužely excitovány, signály jsou nejprve vedeny po sobě jdoucími vrstvami neuronů samotné sítnice, pak do nervových vláken zrakových cest a v důsledku toho do mozkové kůry mozku.
Ve vnějších segmentech tyčí a kuželů velký počet disků. Ve skutečnosti jsou záhyby buněčné membrány. Každá tyč nebo kužel obsahuje asi 1000 disků.
Jak rhodopsin, tak barevné pigmenty jsou konjugované proteiny. Jsou zahrnuty v membráně disku ve formě transmembránových proteinů. Koncentrace těchto fotosenzitivních pigmentů v discích je tak vysoká, že tvoří asi 40% celkové hmotnosti vnějšího segmentu.
Hlavní funkční segmenty fotoreceptorů:
Vysoce organizované sítnicové buňky tvoří 10 sítnicových vrstev.
V sítnici jsou 3 buněčné úrovně reprezentované fotoreceptory a neurony 1. a 2. řádu vzájemně propojenými. Plexiformní sítnicové vrstvy se skládají z axonů nebo axonů a dendritů odpovídajících fotoreceptorů a neuronů 1. a 2. řádu, které zahrnují bipolární, ganglionické a také amakrinní a horizontální buňky, zvané interneurony. (seznam choroidů):
Druhou vrstvu tvoří vnější segmenty fotoreceptorů, tyčí a kuželů. Tyče a kužely jsou specializované vysoce diferencované buňky.
Tyče a kužely jsou dlouhé válcové buňky, ve kterých je izolován vnější a vnitřní segment a komplexní presynaptický konec (kulička tyče nebo kuželové nohy). Všechny části fotoreceptorové buňky jsou spojeny plazmovou membránou. Dendrity bipolárních a horizontálních buněk se vejdou a zatlačí do presynaptického konce fotoreceptoru.
Vnější okrajová deska (membrána) - umístěná ve vnější nebo apikální části neurosenzorické sítnice a je pásem intercelulárních adhezí. Ve skutečnosti to není základ membrány, protože se skládá z propustných, viskózních, těsně přiléhajících propletených apikálních částí Mullerových buněk a fotoreceptorů, není to bariéra pro makromolekuly. Vnější okrajová membrána se nazývá Verhofa fenestrated membrána, protože vnitřní a vnější segmenty tyčí a kuželů procházejí touto blatníkovou membránou do subretinálního prostoru (prostor mezi vrstvou kuželů a tyčí a sítnicovým pigmentovým epitelem), kde jsou obklopeny intersticiální látkou bohatou na mukopolysacharidy.
Vnější granulovaná (jaderná) vrstva je tvořena jádry fotoreceptorů
Vnější retikulární vrstva je proces tyčí a kuželů, bipolárních buněk a horizontálních buněk se synapsy. Je to zóna mezi oběma zásobami krve sítnice. Tento faktor je rozhodující pro lokalizaci edému, tekutého a pevného exsudátu ve vnější plexiformní vrstvě.
Vnitřní granulární (jaderná) vrstva - tvoří jádra neuronů prvního řádu - bipolární buňky, stejně jako jádro amakrinu (ve vnitřní části vrstvy), horizontální (ve vnější části vrstvy) a Mullerovy buňky (jádra druhé vrstvy leží na kterékoli úrovni této vrstvy).
Vnitřní síťová (retikulární) vrstva odděluje vnitřní jadernou vrstvu od vrstvy gangliových buněk a sestává z cívky komplexně větvících a prokládacích procesů neuronů.
Linie synaptických spojení, včetně patky kužele, konce tyče a dendritů bipolárních buněk, tvoří střední okrajovou membránu, která odděluje vnější plexiformní vrstvu. Vymezuje cévní vnitřní část sítnice. Navenek od střední hraniční membrány je sítnice prostá krevních cév a je závislá na choroidální cirkulaci kyslíku a živin.
Vrstva multipolárních buněk ganglionu. Gangliové buňky sítnice (neurony druhého řádu) jsou umístěny ve vnitřních vrstvách sítnice, jejichž tloušťka výrazně klesá směrem k periferii (kolem fovea, gangliové buňky se skládají z 5 nebo více buněk).
Vrstva vláken optického nervu. Vrstva se skládá z axonů gangliových buněk tvořících optický nerv.
V sítnici jsou tři radiálně umístěné vrstvy nervových buněk a dvě vrstvy synapsí.
Ganglionické neurony leží ve velmi hloubkách sítnice, zatímco fotosenzitivní buňky (tyč a kužel) jsou nejvíce vzdálené od středu, to znamená, že sítnice je tzv. Obrácený orgán. Díky této poloze musí světlo před dopadem na fotosenzitivní prvky a působením fyziologického procesu fototransdukce proniknout do všech vrstev sítnice. Nemůže však projít pigmentovým epitelem nebo cévnatkou, které jsou neprůhledné.
Kromě fotoreceptoru a ganglionických neuronů jsou v sítnici také bipolární nervové buňky, které jsou umístěny mezi první a druhou a vytvářejí kontakty mezi nimi, stejně jako horizontální a amakrinní buňky, které provádějí horizontální spojení v sítnici.
Mezi vrstvou gangliových buněk a vrstvou tyčí a kuželů jsou dvě vrstvy plexusů nervových vláken s mnoha synaptickými kontakty. To je vnější plexiformní (tkaná forma) vrstva a vnitřní plexiformní vrstva. V prvním, kontakty mezi tyčemi a kužely a vertikálně orientované bipolární buňky jsou dělány, ve druhém, signál přepne z bipolárního k ganglionic neurons, také jak k buňkám amacrine ve svislém a vodorovném směru.
Vnější jaderná vrstva sítnice tedy obsahuje tělo fotosenzorových buněk, vnitřní jaderná vrstva obsahuje těla bipolárních, horizontálních a amakrinních buněk a vrstva ganglionu obsahuje gangliové buňky, stejně jako malý počet vytěsněných amakrinních buněk. Všechny vrstvy sítnice jsou prošpikovány Mullerovými radiálními gliovými buňkami.
Vnější okrajová membrána je vytvořena ze synaptických komplexů umístěných mezi fotoreceptorem a vnějšími ganglionickými vrstvami. Vrstva nervových vláken je tvořena z axonů gangliových buněk. Vnitřní okrajová membrána je tvořena z bazálních membrán Mullerianových buněk, stejně jako zakončení jejich procesů. Axony gangliových buněk, zbavené Schwannových skořápek, dosahující vnitřního okraje sítnice, se otáčejí v pravém úhlu a jdou do místa tvorby optického nervu.
Funkce pigmentového epitelu sítnice:
V distální sítnici omezují těsné spoje nebo zonula occludens mezi buňkami pigmentového epitelu vstup cirkulujících makromolekul z choriokapilár do senzorické a nervové sítnice.
Poté, co světlo projde optickým systémem oka a sklivce, vstupuje do sítnice zevnitř. Předtím, než světlo dosáhne vrstvy tyčí a kuželů umístěných podél celého vnějšího okraje oka, prochází gangliovými buňkami, retikulárními a jadernými vrstvami. Tloušťka vrstvy překryté světlem je několik set mikrometrů a tímto způsobem nehomogenní tkáň snižuje ostrost zraku.
Avšak v oblasti středové jamky sítnice se vnitřní vrstvy roztáhnou, aby se snížila ztráta zraku.
Nejdůležitější částí sítnice je makula lutea, jejíž stav je obvykle určen zrakovou ostrostí. Průměr bodu je 5-5,5 mm (3-3,5 průměru optického disku), je tmavší než okolní sítnice, protože zde je podkladový pigmentový epitel intenzivně zbarven.
Pigmenty, které dávají této oblasti žlutou barvu, jsou zixantin a lutein, zatímco v 90% případů převažuje zixanthin a 10% lutein. Lipofuscinový pigment se nachází také na periferii.
Makulární oblast a její složky:
Centrální fossa tvoří 5% optické části sítnice a v ní se koncentruje až 10% všech kuželů umístěných v sítnici. V závislosti na jeho funkci je nalezena optimální zraková ostrost. V jamce (foveola) jsou umístěny pouze vnější segmenty kuželů, které vnímají červené a zelené barvy, stejně jako gliové myellerovy buňky.
Makulární oblast u novorozenců: fuzzy kontury, světle žluté pozadí, fovózní reflex a jasné hranice se objevují do 1 roku věku.
Při oftalmoskopii se zdá, že fundus oka je tmavě červený kvůli průsvitnosti přes průhlednou sítnici krve v cévnatce. Na tomto červeném pozadí je na dně oka viditelná bělavá kulatá skvrna, která představuje místo výstupu z sítnice zrakového nervu, která zde zanechává takzvanou hlavu optického nervu, diskem n. optici, s prohloubením ve tvaru kráteru ve středu (excavatio disci).
Disk zrakového nervu je umístěn v nosní polovině sítnice, 2 až 3 mm mediálně od zadního pólu oka a 0,5-1,0 mm směrem dolů. Její tvar je kulatý nebo oválný, ve svislém směru mírně protáhlý. Průměr kotouče - 1,75-2,0 mm. V místě disku nejsou žádné optické neurony, proto v časové polovině zorného pole každého oka odpovídá hlava optického nervu fyziologickému skotomu, známému jako slepý úhel. To bylo nejprve popsáno v roce 1668 fyzik E. Marriott.
Disk optického nervu pod, nad a na nosní straně mírně vyčnívá nad úroveň sítnicových struktur, které ho obklopují, a je na stejné úrovni s časovou stranou. To je dáno tím, že nervová vlákna, která se sbíhají ze tří stran při tvorbě disku, se mírně ohýbají směrem ke sklovci.
Malý váleček se tvoří podél okraje disku ze tří stran a ve středu disku se nachází nálevkovitá prohloubení, známá jako fyziologické vytěžení kotouče, asi 1 mm hluboké. Prochází přes centrální tepnu a centrální žílu sítnice. Na temporální straně hlavy optického nervu takový válec chybí, protože papillomakulární svazek, který se skládá z nervových vláken vycházejících z gangliových neuronů umístěných ve žlutém místě sítnice, se okamžitě ponoří do sklerálního kanálu. Nad a pod papilomavulárním svazkem v hlavě zrakového nervu jsou nervová vlákna z horního a dolního kvadrantu časové poloviny sítnice. Střední část hlavy optického nervu se skládá z axonů gangliových buněk umístěných ve střední (nosní) polovině sítnice.
Vzhled hlavy optického nervu a velikost jeho fyziologického výkopu závisí na vlastnostech sklerálního kanálu a úhlu, ve kterém se tento kanál nachází ve vztahu k oku. Jasnost okrajů hlavy optického nervu je dána zvláštnostmi vstupu optického nervu do sklerálního kanálu.
Pokud optický nerv vstupuje do ostrého úhlu, retinální pigmentový epitel končí před hranou kanálu a tvoří polokruh tkáně cévnatky a skléry. Překročí-li tento úhel 90 °, zdá se, že jedna hrana disku je strmá, a naopak. Pokud je cévnatka oddělena od okraje hlavy optického nervu, je obklopena semifinále. Někdy okraj disku má černý okraj protože nahromadění melanin kolem toho.
Plocha hlavy optického nervu je rozdělena do 4 zón:
Podle Salzmanna jsou na disku optického nervu tři části: sítnice, cévnatka a sklerál.
Disk zrakového nervu je nevodivá neurální formace, protože jeho nervová vlákna jsou zbavena myelinového pochvy. Disk optického nervu je bohatě zásobován cévami a podpůrnými prvky gliálu. Gliální elementy v něm, astrocyty, mají dlouhé procesy, které obklopují svazky nervových vláken. Oddělují optický nerv od sousedních tkání. Hranice mezi bezkotnyh a mkotnyh rozdělení optického nervu se shoduje s vnějším povrchem cribriform desky (lamina cribrosa).
Vylepšená charakteristika biometrických indikátorů hlavy optického nervu byla získána pomocí trojrozměrné optické tomografie a ultrazvukového skenování.
Sítnice a hlava zrakového nervu jsou ovlivňovány nitroočním tlakem a retrolaminární a proximální části zrakového nervu pokryté meningy prožívají tlak mozkomíšního moku v subarachnoidním prostoru. V tomto ohledu mohou změny nitroočního a intrakraniálního tlaku ovlivnit stav fundu a zrakových nervů a následně i vidění.
Použití fluorescenční angiografie fundusu umožnilo v hlavě optického nervu rozlišit dva vaskulární plexy: povrchové a hluboké. Povrchová plocha je tvořena retinálními cévami, vyčnívajícími z centrální tepny sítnice, hluboké vytvořené z kapilár dodávaných krví z cévovitého cévního systému, který protéká zadními krátkými ciliárními tepnami. Projevy autoregulace krevního oběhu jsou zaznamenány v cévách zrakového nervu a počátečních částech jeho trupu. Existuje pravděpodobnost variability jejich krevního zásobení, protože jsou známy případy příznaků těžké ischémie hlavy zrakového nervu s výskytem příznaku "třešňové kosti" v makulární oblasti s okluzí pouze centrální arterie sítnice nebo selektivní léze zadních krátkých válcových tepen.
V retroubarové části optického nervu jsou identifikovány všechny části mikrocirkulačního lože: arterioly, prepillary, kapiláry, postkapiláry a venulg. Kapiláry tvoří převážně síťové struktury. Pozornost přitahuje crimpus arteriol, závažnost žilní složky a přítomnost mnoha veno-venulárních anastomóz. Tam jsou také arterio-venous shunts.
Ultrastruktura stěn kapilár hlavy optického nervu je podobná kapilárám sítnice a mozkových struktur. Na rozdíl od othorikapillaronu jsou neproniknutelné, zatímco jejich jediná vrstva hustě umístěných endotheliálních buněk nemá otvory. Intramurální pericyty jsou umístěny mezi vrstvami hlavní membrány prepilár, kapilár a postkapilár. Tyto buňky mají tmavé jádro a cytoplazmatické procesy. Možná pocházejí z zárodečného vaskulárního mesenchymu a jsou pokračováním svalových buněk arteriol.
Předpokládá se, že inhibují neovaskulogenezi a mají schopnost redukovat buňky hladkého svalstva. V případech porušení inervace krevních cév se zdá, že dochází k jejich rozpadu, který způsobuje degenerativní procesy v cévních stěnách, desolaci a obliteraci lumen cév.
Nejdůležitějším anatomickým znakem intraokulárního axonálního řezu gangliových buněk sítnice je absence myelinového pochvy. Kromě toho sítnice, stejně jako cévnatka, nemá žádné smyslové nervové zakončení.
Existuje velké množství experimentálních a klinických důkazů o úloze zhoršené arteriální cirkulace v hlavě zrakového nervu a přední části jeho trupu ve vývoji zrakových defektů glaukomu, ischemické neuropatie a dalších patologických procesů v oční bulvě.
Odtok krve z oblasti hlavy zrakového nervu az jeho nitroočního oddělení se provádí převážně centrální žílou sítnice. Část žilní krve proudí ze své preaminární oblasti přes cévnatku a poté vortikotické žíly. Tato okolnost může být důležitá v případech okluze centrální sítnicové žíly za cribriformní deskou. Dalším způsobem, jak odtok tekutiny, ale ne krve, a CSF, je orbitální-obličejový likér-lymfatická dráha z intervaginálního prostoru optického nervu do submandibulárních lymfatických uzlin.
Při studiu patogeneze ischemických procesů na disku zrakového nervu je třeba věnovat pozornost následujícím jednotlivým anatomickým rysům: struktuře etmoidní destičky, Zinn-Hallerovu kružnici, distribuci zadních krátkých ciliárních arterií, jejich počtu a anastomóze, průchodu optickým diskem centrální sítnicové tepny, změnám cévních stěn přítomnost příznaků obliterace, změny v krvi (anémie, změny stavu koagulačně-antikoagulačního systému
a další.).
Přívod krve sítnice se provádí ze dvou zdrojů: vnitřní šest vrstev jej přijímá z větví centrální tepny (větev a. Ophtalmica) a vnější vrstvy sítnice, které zahrnují fotoreceptory, z choriokapilární vrstvy cévnatky (tj. Oběhové sítě, tvořené zadními krátkými ciliárními tepnami).
Kapiláry této vrstvy mezi buňkami endotelu mají velké póry (fenestra), což způsobuje vysokou permeabilitu stěn choriokapilár a vytváří možnost intenzivní výměny mezi pigmentovým epitelem a krví.
Centrální sítnicová tepna je nesmírně důležitá při zásobování krve vnitřními vrstvami sítnice, stejně jako zrakovým nervem. Odchází od proximální části oblouku oftalmické tepny, která je první větví vnitřní karotické tepny. Průměr centrální arterie sítnice v její počáteční části je roven 0,28 mm, u vstupu do vnitřku oka, v oblasti hlavy optického nervu - 0,1 mm.
Rotační nádoby o tloušťce menší než 20 mikronů nejsou během oftalmoskopie viditelné. Centrální sítnicová tepna je rozdělena do dvou hlavních větví: horní a dolní, které se zase dělí na nosní a temporální větve. V sítnici jsou umístěny ve vrstvě nervových vláken a jsou konečné, protože mezi nimi nejsou žádné anastomózy.
Endoteliální buňky sítnicových cév jsou orientovány kolmo na osu cévy. Stěny tepny, v závislosti na kalibru, obsahují jednu až sedm vrstev pericytů.
Systolický krevní tlak v centrální retinální tepně je asi 48-50 mm Hg. Dosavadní stav techniky, což je dvojnásobek normální úrovně nitroočního tlaku, takže úroveň tlaku v kapilárách sítnice je mnohem vyšší než v jiných kapilárách plicního oběhu. S prudkým poklesem krevního tlaku v centrální tepně sítnice na úroveň nitroočního tlaku a níže dochází k narušení normální dodávky krve do sítnicové tkáně. To vede k rozvoji ischemie a zrakového postižení.
Rychlost průtoku krve v arteriolách sítnice, podle fluorescenční angiografie, je 20-40 mm za sekundu. Sítnice je charakterizována mimořádně vysokou absorpční rychlostí na jednotku hmotnosti mezi ostatními tkáněmi. Difuzí z cévnatky jsou vyživovány pouze vrstvy vnější třetiny sítnice.
U přibližně 25% lidí, cilioretinal tepna, který dodává krev k většině žluté skvrny a papillomacular svazku, je propuštěn z cév cévnatky v zásobě krve k sítnici. Okluze centrální retinální arterie v důsledku různých patologických procesů u lidí s cilioretinální arterií vede k mírnému snížení zrakové ostrosti, zatímco embolie cilioretinální arterie významně narušuje centrální vidění při zachování periferního vidění beze změny. Sítnicové cévy končí jemnými cévními oblouky ve vzdálenosti 1 mm od linie dentate.
Odtok krve ze sítnice se projevuje venózním systémem. Na rozdíl od tepen, žíly sítnice nemají svalovou vrstvu, takže lumen žil se snadno rozšiřuje, zatímco protahování, ztenčování a zvyšování propustnosti jejich stěn dochází. Žíly jsou umístěny paralelně s tepnami. Žilní krev proudí do centrální žíly sítnice. Její krevní tlak je normální 17-18 mm Hg. Čl.
Větve centrálních tepen a žil sítnice procházejí ve vrstvě nervových vláken a částečně ve vrstvě gangliových buněk. Oni se tvoří v sítnici a vrstvené kapilární síti, obzvláště vyvinutý v jeho zadní části. Kapilární síť je obvykle umístěna mezi přívodní tepnou a odtokovou žílou.
Retinální kapiláry začínají z prekurzorů, které procházejí vrstvou nervových vláken, a vytvářejí kapilární síť na okraji vnějších plexiformních a vnitřních jaderných vrstev. Volné zóny od kapilár v sítnici jsou kolem malých tepen a arteriol, stejně jako v oblasti makuly, která je obklopena arkádovitou vrstvou kapilár, která nemá jasné hranice. Další ne vaskulární zóna je tvořena na krajním okraji sítnice, kde končí sítnicové kapiláry, které nedosahují linie zubů.
Ultrastruktura stěn arteriálních kapilár je podobná kapilárám mozku. Stěny sítnicových kapilár se skládají z bazální membrány a jedné vrstvy ne-fenestrovaného epitelu.
Endothelie kapilár sítnice, na rozdíl od choriokapilár z cévnatky, nemá póry, proto je jejich permeabilita mnohem menší než u choriokapilár, což naznačuje, že plní bariérovou funkci.
Sítnice sousedí s cévnatkou, ale v mnoha oblastech je volná. Právě zde má tendenci se odlupovat při různých onemocněních sítnice.
Patologie retinálního kónického systému se klinicky projevuje různými změnami v makulární oblasti a vede k dysfunkci tohoto systému a následně k různým poruchám barevného vidění, snížení zrakové ostrosti.
Existuje velké množství dědičných a získaných onemocnění a poruch, do kterých může být zapojena sítnice. Některé z nich zahrnují: